	DR. BABASAHER AMREDICAR TECHNIQUE		
	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, L	ONERE	
	Supplementary Examination – Summer 2022 Course: B. Tech. Branch: Computer Science and Engineering Semester: III		
	Subject Code & Name: BTCOC302_Discrete Mathematics Seme	ster: III	
	Max Marks: 60 Date: Duration: 3 H		
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outcowhich the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 		
0.1		(Level/CO)	Marks
Q. 1	Solve Any Two of the following.		Property.
A)	Explain with example, notation used and mathematical pression to describe following terms	(L1/CO1)	06
	1)Membership 2) Subset 3) Equality of two sets		
B)	identify type of compound statements a. $(p \land q) \rightarrow (p \lor q)$	(L3/CO1)	06
-	b. $(q \rightarrow \neg p) \leftrightarrow (p \leftrightarrow q)$		
C)	If there is strike by student, then exam will be postponed. Exam was not postponed.	(L3/CO1)	06
	Therefore, there were no strikes by students		
Q.2	Solve Any Two of the following.		
A)	Let A= {1,2,3,4,6,8,12} and R be the partial order on A defined by aRb if a divides b. Determine the relational matrix for R. Construct directed graph G on A. Draw Hasse diagram of Poset (A, R).	(L1/CO2)	06
B)	State Pigeon hole principle. If five colors are used to paint 26 doors show that at least Six doors will have the same door	(L3/CO2)	06
C)	Let $f(x) = 2x+3$, $g(x) = 3x+4$, $h(x) = 4x$ for $x \in R$, where R is set of real numbers. Find gof, fog, foh and hof.	(L1/CO2)	06
Q. 3	Solve Any One of the following.	The second	
A)	Show that the maximum number of edges in a simple graph having n vertices is $n*(n-1)/2$.	(L1/CO3)	06
		(L1/CO3) 06
B)	1) For a given graph G1 a) Find a Hamiltonian path that begins at A and ends at E. b) Find a Hamiltonian circuit that starts at A and ends with the pair of vertices E, A		

	1 28 2 10 14 16 6 7 18 12 25 5 2 2 4		
C)	Show that a tree with n vertices has n-1 edges	L1/CO3	06
Q. 5	Solve Any One of the following.		
A)	. Define the following terms 1. Algebraic structures 2. Semi Group 3. Monoids 4. Ring 5. Field 6. Group	L1/CO4	06
В)	For each of following, determine whether the binary operations * is commutative or associative? i) N is the set of natural numbers and a*b=a+b+2 for all a,b from N ii) on N where a*b=min (a, b+2) iii) on R where a*b=a ^b	L3/CO4	06
C)	Determine whether $(Z, +, *)$ is a ring with the binary operations $\mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{y}$ -7 And $\mathbf{x} * \mathbf{y} = \mathbf{x} + \mathbf{y}$ -3 $\mathbf{x} * \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in Z$	L1/CO4	06
	*** End ***		

The grid and the borders of the table will be hidden before final printing.